

Technical Sheet

No. 24-27

薄膜応力測定装置

キーワード:薄膜応力測定装置、薄膜応力評価、基板反り測定、製膜条件最適化

薄膜応力とは

スパッタリングや真空蒸着によって作製された薄 膜には、膜構造に起因する内部応力や基板との熱 膨張係数の差に起因する熱応力などが蓄積されて います。このような応力は圧縮応力と引張応力に分 類され、それぞれ、図1に示すような力を基板へ及 ぼします。過剰な応力は、薄膜の本来の機能性を 低下させる原因となります。例えば、半導体デバイ スにおいては、薄膜の内部応力がトランジスタの動 作に悪影響を及ぼし、製品全体の信号伝達性能 や耐久性が損なわれることがあります。また、応力 の蓄積しやすい多層膜コーティングでは、耐久性 や光学特性へ悪影響を及ぼします。応力が一定値 を超えると、膜の浮きや割れ、さらには剥離に至る ため、製品の信頼性が著しく低下します。

薄膜応力測定装置とは

薄膜の内部応力を制御するためには、製膜プロ セスを最適化することが非常に重要です。とくに膜 形成時における粒子エネルギーや真空度、基板温 度などは応力を決定する重要なパラメータとなりま す(裏面の分析使用例をご参考ください)。本稿で ご紹介する薄膜応力測定装置は、厚さが数百 nm から数 µm 程度の薄膜の応力値を測定する装置で す。この装置を使用することで、非破壊かつ高速、 さらに定量的に薄膜の応力値を取得することが可 能です。多数のプロセスパラメータの中から、主要 な因子を特定し、さらにそれを最適な値へ調整する

ためには、本装置のような高精度な薄膜応力測定 装置が必須となります。

装置の特徴と応力測定原理

薄膜応力測定装置の外観写真を図 2(左)に、 本装置における応力測定原理を図 2(右)に示しま す。外観写真のように本装置は測定器本体と測定 結果の表示、分析を行う PC から構成されています。

本装置は、薄膜の堆積に伴って基板に生じる変 形量をレーザーによって高精度に測定することを基 本原理としています。薄膜形成前後の基板の変形 量を高精度に測定することで、薄膜の応力を定量 的に評価することができます。具体的には、以下の Stoney の式を用います^[1]。

$$\sigma_{f} = \frac{E_{s}t_{s}^{2}}{(1 - v_{s}) \, 6t_{f}} \left(\frac{1}{R_{1}} - \frac{1}{R_{0}}\right)$$

ここで、 σ_f は薄膜の応力値、 E_s は基板の弾性率、 ts,tfはそれぞれ基板、薄膜の厚み、vsは基板のポ アソン比、R₀, R₁はそれぞれ製膜前、後の基板の曲 率半径です。式の通り、算定には薄膜の堆積前後 の基板の曲率半径を測定する必要があります。(な お、製膜前の基板はそれぞれ固有の反りを有して いるため、曲率半径の事前測定が必須となります。)

本装置は、半導体レーザーを一軸方向、あるい は基板全面をマッピング状に走査することで、精密 に曲率半径を測定することができるレーザー光学 系を装備しており、これによって高精度な応力値評 価が可能となります。

図2 左:装置外観写真 右:本装置の応力測定原理

地方独立行政法人 大阪産業技術研究所 本部·和泉センター https://orist.jp/

〒594-1157 和泉市あゆみ野2丁目7番1号 Phone: 0725-51-2525(総合受付)

表1 装置の主な仕様

装置仕様	
型番	東朋テクノロジー株式会社製
基板サイズ	1 LX-2320-K 3~8 インチ
応力範囲	1∼4,000 MPa ※1
測定再現性	±1.3 MPa ※2
昇温機能	なし(常温測定のみ)
レーザー使用 波長	670 nm / 780 nm
ロケータ ※3	・3,4,5 インチウェハ用 ・70×70 mm□基板用

※1:8インチシリコンウェハ上の1µm厚の薄膜サンプル を測定した場合※2:8インチ応力スタンダードウェハを10 回連続測定した場合※3:基板位置補正用治具

装置仕様

表1に本装置の主な仕様を示します。弊所では 3,4,5インチウェハと70×70 mm□基板の測定が 可能です。なお、本装置は、レーザー光の反射測 定により基板の反りを求めるため、薄膜表面は低散 乱・低吸収で一定の反射率が必要です。また、光 学干渉による反射率低下と測定精度低下を抑える ため、二波長のレーザー光源を備え、多様な屈折 率の薄膜や基板に対応しています。

分析使用例 (スパッタ Ta 薄膜応力評価)

弊所保有のマグネトロンスパッタ装置(テクニカル シート No.21-04)を用いて作製した Ta 薄膜の応力 評価例を示します。スパッタターゲットには Ta(純度 4N)を使用し、直流マグネトロンスパッタ法によって シリコン基板(4 インチ)上へ 300 nm の Ta 薄膜を 作製しました。結晶化による応力変動要因を排除 するため、基板は非加熱(室温近傍)としました。表 2 に示すように、比較する製膜時圧力とスパッタ電 力はそれぞれ 3 水準としました。全てのシリコン基

表2 Ta 薄膜作製時のスパッタ条

I. 製膜時圧力調整実験条件		
スパッタ電力	DC 250 W	
製膜ガス	Ar ガス 40, 50, 60 sccm	
製膜時圧力	0.1, 0.5, 1.0 Pa	
Ⅱ.スパッタ電力調整実験条件		
スパッタ電力	DC 200, 250, 300 W	
製膜ガス	Ar ガス 50 sccm	
製膜時圧力	0.5 Pa	

図3 スパッタ製膜条件による応力値の変化 左:製膜時圧力依存性 右:スパッタ電力依存性

板で製膜前の反り測定を行った後、各条件で製膜 を実施し、製膜前後の基板の反りの変化量から応 力値を算出しました。

結果を図3に示します。Ta 薄膜は、製膜時の圧 カ上昇に伴い、圧縮応力(-1,200 MPa)から引張応 力(+1,000 MPa)へ、スパッタ電力上昇に伴い、引張 応力(+150 MPa)から圧縮応力(-180 MPa)へ変化 する様子が明瞭に観測できます。

両者の結果は、スパッタ粒子の運動エネルギー の向上による膜の緻密化が、強い圧縮応力発生の 要因となっていることを示唆しています。さらに、製 膜時真空度の影響が大きいことから、雰囲気中の Ar や残留ガス分子との衝突がスパッタ粒子エネル ギーを大きく増減させ、膜応力を決定する主要因と なっていることがわかります。

このような測定を行うことで応力の絶対値が小さい(すなわち、基板の変形や膜剥離のリスクが低い) 薄膜を作製するための製膜条件(本分析例では、 製膜時真空度 0.5 Pa やスパッタ電力 250 W)を定 量的に決定することが可能になります。

おわりに

本稿の分析例以外にも酸窒化膜や化合物材料 など、真空製膜時の応力抑制が課題となるケース は薄膜産業に多く見受けられます。本装置は、依 頼試験と装置使用の両方に対応しておりますので、 製品開発に幅広くご活用ください。

また、薄膜作製や薄膜評価に関する技術的な課 題についても、技術相談を承っております。お気軽 にお問い合わせください。

参考文献

[1] G. G. Stoney, Proc. R. Soc. London Ser. A 82 172-175. (1909).

発行日 2025 年 3 月 1 日 作成者 電子・機械システム研究部 電子デバイス研究室 近藤 裕佑、松村 直巳