プラスチック粉末RP装置の活用

The Practical Use of the Plastics Powder Rapid Prototyping

吉川 忠作 * Chyusaku Yoshikawa

(2014年8月21日 受理)

キーワード:ラピッドプロトタイピング,プラスチック粉末 RP,寸法精度,表面粗度,機械的性質

1. はじめに

2013 年に 3D プリンタとして知名度が急上昇した RP(Rapid Prototyping)は、迅速試作を意味する技術で あるが、2012 年には、ASTM International によって AM(Additive Manufacturing)として定義がなされ、付 加(付与)製造プロセスと位置付けられている¹⁾.す なわち、従来の除去加工(切削加工、レーザ加工、エッ チング加工、電気加工)、変形加工(プレス加工、鍛 造加工、鋳造加工、粉末加工)などとともに付加加工 の1つとして認識されるようになった.このような位 置付けは、試作品作製を主な用途に開発された RP が、 これまでの技術開発の中で製品を製造する手法として の地位を確立しつつあると解釈できる.

本報は, RP 技術の実力(特徴, 性能)について言 及する. RP 技術は 3 次元 CAD(3 次元形状データ)な しに利用することは不可能であるため, 最初に RP が 一翼をになう「デジタルものづくり」との関連性につ いて述べる. その後, 現状での RP 技術の動向と, 具 体例として当研究所に導入したプラスチック粉末 RP 装置の解説を行い, いくつかの実験データによって RP 装置の実力を示し, RP 技術が実用的な製造法とし て認められるか否かの指標を提供する.

2. プラスチック RP 技術

2.1 デジタルものづくり

* 加工成形科

図1に、3次元形状データを中心とした「デジタル

ものづくり」の流れを示す.従来のものづくりであれ ば、3 次元 CAD で設計した後、CAE(FEM 等を利用 しコンピュータ画面上で模擬実験を試み最適な形状を 得るシミュレーション)を活用することにより、最適 な3 次元形状データを創製する.そしてその形状デー タから、CAM を介して NC データを作り5 軸等の NC 工作機械を駆使して製品を加工していた.ところが、 RP 装置と3 次元 CAD の高精度化にともない、最終出 力装置が工作機械から3 次元形状データと相性の良い RP 装置に取って代わることにより、「デジタルものづ くり」の基本的な流れが生まれ、当所では CAD/CAE/ RP 連携利用を提唱してきた.

この結果、本格的な製造工程を立ち上げる前段階 で、CAD/CAEのみでは評価・検討が不十分な課題を CAD/RP 連携によって試すことも可能となり、実体の ある立体モデル出力によるシルエット、ハンドリン グ、勘合、組み付け動作などの検討、およびデザイン レビュー用サンプルの作製をより迅速に行うことが可 能となった.つまり、「デジタルものづくり」が目指 すのは、CAD/CAE/RPの連携利用により形状データ の問題点を早期に抽出し修正することであり、実生産 に移行してからのロスを極力なくしたものづくりであ

図1 デジタルものづくりの流れ

る. さらに,「デジタルものづくり」において, RP 装置(出力装置)と対になる 3D スキャナ(入力装置)の 利用も拡大しつつある. 3D スキャナを用いることで, 3 次元 CAD における形状作成を迅速化するばかりで なく,クレイなどのモデルを作れば誰もが設計できる ことから,デザイナー・設計者,さらには「ものづく り」の一般化・大衆化にも貢献している.

2.2 造形原理と造形方式

RP 加工の基本的なプロセスは,造形物の最下面の 層から一層単位で造形を繰り返し積層することであ る.そのために,造形の前段階としてソフト上で①3 次元形状データ(STL データ等)の受け取り,②3次 元データ品質の適正化,③造形方向の確定,④スライ スデータの作成をおこなう.多くの造形方式において は,サポート部(オーバーハング部やアンダーカット 部の造形を補助するための支持部分)を必要とするた め,⑤サポート部データ作成も併せて実施する.図2 はこれらの流れを示したもので,サポートデータを含 むスライスデータを作成後,設計形状を下から順に造 形し積層して行き,造形完了後にサポートを除去して 製品形状を得る.

これら基本プロセスにもとづくプラスチック RP 装 置は、1985年ごろに販売が開始され、各種の手法お よび工法が多くのベンチャー的な企業から発表され てきた.現在,RP装置の造形方式は主に次の5種類 の方式が存在する. ①光造形法 (Stereolithography), ② 熱溶融積層法 (FDM: Fused Deposition Modeling), ③粉末積層造形法 (SLS: Selective Laser Sintering), ④薄板(シート)積層法, ⑤インクジェット積層法で あり, 方式ごとに使える材質, 表面品質, 造形サイ ズ, 造形時間, 造形コストなどが異なる. 例えるなら, PC(パーソナルコンピュータ)上のデータを印刷する 際に、用いるプリンタにレーザ、インクジェット、熱 転写などの方式があり、インクやトナー、印刷品質、 印刷サイズ、プリント時間、ランニングコストなどが 異なるのと同じである. それぞれの造形方式の一般的 な特性を表1にまとめている.

RP 装置の第一の特徴は、利用できる材料および素

図2 RP による造形の流れ

衣I N 坦形伝式の比戦	表1	RP 造形法式の比較	交
---------------------	----	------------	---

造形方式	造形原理	造形可能材料 (造形装置メー カーごとに差 異あり)	表面品質・ 精度(積層厚 さに依存)	造形サイズ (造形可能サ イズ)	造形時間	長所/短所
①光造形法 Stereolithography	光硬化樹脂をレ ーザで硬化	アクリル系 光硬化性樹脂, 熱溶融型 光硬化性樹脂	Ø	Ø	0	 ○高精細モデル造形 △造形後の後処理(洗浄, 再硬化)が必要
②熱溶融積層法 FDM Fused Deposition Modeling	細いノズルから 押出した溶融材 料を積層固化	ABS PC PC/ABS PPSF	Δ	Δ	∆~0	 ○ABS, PC が利用可能 ○サポート除去が容易 △光造形に比べ精度が粗
③粉末積層造形法 SLS Selective Laser Sintering	粉末材料をレー ザで焼結	ナイロン ポリスチレン ゴム PEEK	Δ	0	Δ	 ○樹脂,金属材料が可能 ○樹脂造形はサポート不要 △光造形に比べると精度が 粗
④薄板(シート) 積層法	シート状素材を レーザやカッタ ーでトリミング し積層	紙 樹脂シート	×~©	Ø	0	 ○シート材料の入手,扱い が容易 △サポートの除去 △後処理(表面コート)が必要
⑤インクジェット 積層法	インクジェット プリンタ技術で 微少量の樹脂や 接着剤などを噴 射積層	「熱可塑性樹 脂に似た」 光硬化性樹脂	Ø	0	0	○高速にモデル造形 △モデル強度が弱い

材が造形方式により限定される点である.表1より① 光造形法と⑤インクジェット積層法は光硬化性樹脂. ④薄板(シート)積層は紙あるいは樹脂シート、そし て②熱溶融積層法と③粉末積層造形法がプラスチック 製品に多用される熱可塑性プラスチックを利用でき る. 表面品質および寸法精度は, 積層厚さの精細さと 造形時のレーザスポット径などに依存し, ①光造形法 と⑤インクジェット積層法は良好であるが、②熱溶融 積層法と③粉末積層造形法は劣る傾向にある.造形が 可能なサイズは、造形エリアの面積と高さによって決 まるが,利用しているユーザーからの要望に対応して, 近年では大型造形が可能な装置のラインナップが充実 して来ている.特に①光造形法と④薄板(シート)積 層法は大型造形に適している.造形に要する時間は、 1 層分の造形に要する時間と次の層の造形に移行する ために要する時間の総和で計算されるが、積層厚さが 微小になると積層すべき層数が多くなり造形時間を要 することになる.各方式の長所と短所については,一 般的な認識を列記しているが、装置メーカあるいは機 種による差異や,画期的な進歩がなされ得る可能性が あることを付け加えておきたい.

研究所導入設置のプラスチック粉末 RP 装置

当研究所でこれまでに導入した RP 装置は,表1の ②熱溶融積層法 (FDM) [2003 年~2008 年],および ③粉末積層造形法 (SLS) [2013 年~]の2機種で,い ずれも熱可塑性プラスチックを材料とする装置であ る.FDM 方式は,低価格の造形装置に多く取り入れ られている方式であり,3D プリンタと呼ばれるジャ ンルの一般的な造形方式と位置づけられる.それに 対して,SLS 方式は,AM として取り上げられる金属 RP 装置の代表的な方式であり,樹脂造形の場合には サポートが不要といった特徴もあり,実用的な製品造 形に適した方式と考えられる.

3.1 装置の仕様

それぞれの装置の仕様を表2に比較して示す. FDM

メーカー 型式	(独)イオス社製 FORMIGA P110	(米)Stratasys 社製 FDM TITAN	
造形方式	粉末積層造形法(SLS)	熱溶融積層法(FDM)	
造形領域	幅 200 mm×奥行 250 mm×高さ 330 mm	幅 355 mm×奥行 406 mm×高さ 406 mm	
積層厚さ	0.12 mm or 0.1 mm or 0.06 mm	0.245 mm or 0.127 mm	
造形材料	PA12, PS(鋳造マスターモデル)	PC, ABS, PPSF	
材料の形態	粉体(60 µm)	ワイヤー状(Φ2 mm)	
サポート	不要	必要	
造形データ作成ソフト	Magics(RP 汎用ソフト)	FDM Insight(専用ソフト)	
装置外観			

表2 運用 RP 装置の比較

方式の FDM TITAN は 2003 年の装置であることを付 記する.両装置は熱可塑性プラスチック製の造形モデ ルを作製できることから,造形品の用途は,外観形状 確認にとどまらず,実製品と同様の性能や機能確認を 行うためのワーキングモデルの作製へと拡大する.

造形材料の性状は両装置によって異なっている. FDM 方式は直径 2 mm のワイヤー状の熱可塑性プラ スチックをキャニスターと呼ばれるケースに入れた状 態で取り扱う.SLS 方式は,粒径 50 µm 程度の粉体状 の熱可塑性プラスチックをプラスチック容器に入れて 取り扱う.SLS 方式の PA12 粉体(平均粒径 55 µm)と PS 粉体(平均粒径 81 µm)の形状を図 3 に示す.不定 形状粒子の PA12 粉体は粉砕によるブレイクダウン法 (トップダウン法),球形粒子の PS はビルドアップ法 (ボトムアップ法)による製法と考えられる.

3.2 造形の手順

造形方向は,造形準備段階の造形用データ作成時に 指定する.造形方向により積層厚さ刻みの段差の現れ 方が変化する.特に,積層方向に対して緩い斜面には, 刻みの段差が拡大された縞状のパターンが顕著に現わ れる.

次に,造形モデルを造形エリアに配置し造形ジョブ を決定する.サポートを必要とする造形方式の例とし て FDM 方式の配置例を図4に,サポート不要造形で ある SLS 方式の配置例を図5に示す.FDM 方式に対 して,SLS 方式はサポート不要造形により,複雑形状 やアッセンブリモデルへの対応,立体配置による造形 ジョブの運用効率が向上することが分かる.さらに, FDM 方式の場合,サポートの設計工程および造形品 からサポートを分離する工程も必要となり非効率であ る.

造形完了後の作業については, FDM 方式ではサポートを手作業で除去する. ABS 造形では, 溶液に溶出可能なサポート素材を利用することも可能である.

(a) PA12

(b) PS図 3 SLS 造形用材料粉末

図4 FDM 造形におけるモデル配置の例

図5 SLS 造形におけるモデル配置の例

SLS 方式では、内部に造形物を埋包した状態の造形粉 末から、造形物を掘り出す手作業(図6:アンパッキ ング)を行い、その後、図7のブラスト装置内でエア ブローおよびガラスビーズのブラストを利用して、造 形品の表面に付着した粉末を除去して仕上げる.また、 アンパッキング工程で生じる造形粉末は、ふるいを通 したのち、未使用粉末と1:1 で混合撹拌し再利用する.

図6 SLS 造形における造形物掘り出し(アンパッキン グ)作業

(a) 造形時の状態

3.3 造形物の例

FDM, SLS それぞれの方式により作製した造形品 の例を図 8, 図 9 に示す.図 8 では,造形時のサポー トとモデルが一体化した状態(図 8 (a))と,分離した 状態(図 8 (b))を比較して示している.図 9 では,造 形データ作成ソフト Magics を利用して,あらかじめ 切断したチェスの駒カットモデル(図 9 (a))と,X線

図7 ブラスト装置

(b) サポート(上)とモデル(下)を分離した状態図8 FDM 造形品の例

(b) X線CTデータからの形状データを用いた クワガタムシの拡大モデル

(a) チェスの駒のカットモデル

図10 SLS 造形における寸法補正用サンプル

図11 立ち壁を有するサンプル(70×30×10 mm: 壁部:厚さ 0.1, 0.2,,, 1.1, 1.2 mm, 幅 20 mm, 高さ 12 mm)

4. プラスチック粉末 RP 造形の活用に向けて

当所導入のプラスチック粉末 RP 装置の実力を見極 め効果的に運用・活用するために,材料を PA12,積 層ピッチ 0.1 mm の条件で行った造形試験の結果を報 告する.

4.1 寸法精度

造形品の寸法精度を補償するために、図10に示す 寸法補正用サンプル(図5モデル配置の最上部のサン プル)を造形し、同サンプルの各部の寸法を測定後、 その測定値を造形用データにフィードバックする工程 を実施する.この工程を経ることで、モデル造形時の 固化収縮や造形時の環境温度 (PA12: 170°C 程度, PS: 150°C程度)からの熱収縮,さらには造形粉末のバラ ツキを補正し微調整することが出来る. 寸法補正用サ ンプルの計測結果の例とスケーリングパラメータを 表3に示す.この例の場合は、スケーリングパラメー タを、X方向0.70から0.75、Y方向0.70から0.72、 への修正が指示されている. この場合の寸法誤差は ±0.05 mm 程度であることがわかる. 一般的に, この 程度の寸法誤差 (±0.05 mm) が発生することは予想さ れるため, 正確な寸法の造形物を得ようとすれば, あ らかじめ寸法の異なる試料を造形スペースが許す範囲 で準備するのも一つの対策である.

次に,造形可能な厚さについて確認を行った.図 11に示す立ち壁部を有するサンプルを,図12の①~ ④の4種の造形配置で造形し壁厚さを計測した.結 果を図13にまとめて示す.立ち壁厚さは,設計値 が0.1~0.4 mmの間はほぼ0.5 mmであり,設計値が

表3 寸法補正用サンプル計測結果例とスケーリングパラメータ

Shrinkage calculation x-direction:

Setpoint:	30.00	60.00	90.00	120.00	150.00	180.00
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Actual size:	29.99	60.00	89.92	119.98	149.88	179.86

Shrinkage calculation y-direction:

Setpoint:	30.00	60.00	90.00	120.00	150.00	180.00
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Actual size:	29.99	60.03	89.99	119.93	149.94	179.89

Scaling	Old	New
	[%]	[%]
X:	0.70	0.75
Y:	0.70	0.72

図12 立ち壁サンプル造形配置①~④

図13 配置①~④の立ち壁厚さ計測結果

0.5 mm 以上では実測値は設計値とほぼ一致している. これは, 造形に使用する熱源である, レーザの集束ビー ム径が,約0.5 mm であることが反映されたものと考 える.この傾向は4種の配置によって異なるものでは ない.

4.2 表面粗度

図 14 に示すブロック状の造形サンプルを作製し, サンプルの上面と側面の表面粗さ測定を実施した.測 定器はレーザテック社製の共焦点顕微鏡 [HD-100] により行った.図15より,算術平均粗さ Ra は上面 と下面が10 µm,側面が15 µm であり,最大高さ粗 さ Rz は上面と下面が60 µm,側面が120 µm であっ

図14 表面粗さ計測サンプル (145×50×30 mm)

た. 材料粉体の平均粒径が 55 µm であることを考慮 すれば,粉体1粒が表面に残るか否かによって Rz が 60 µm 程度になることは容易に想像される. このよう な表面性状は,図15の計測結果(上面)にも現われ, 材料粉体の粒子(平均粒径 55 µm)の痕跡とみられる 凸パターンの形成が認められる.

4.3 機械的性質

一般的に RP 造形物の機械的性質は,造形方向により変化する.これは,積層造形プロセスの各層間の密

図16 3種の造形方向A, B, C

図17 引張り強度の造形方向,厚さの依存性

図19 曲げ弾性率の造形方向,厚さの依存性

着性,層内での造形ツールパスに起因するものであ り,積層造形において不可避となっている. RP 造形 物をワーキングモデルとして使用する場合には,機械 的性質の造形方向依存性を把握し,適切に補正するこ とにより高精度なワーキングテストにつながることを 既報²⁾において FDM 方式について報告した.

SLS 方式についての取り組み結果を報告する. 図 16 に示すような、3 種の造形方向(A, B, C)と、2 種 の造形厚さ(4.0, 5.5 mm)の引張(JIS K7113:1号)・曲 げ(JIS K7171)・シャルピー衝撃(JIS K7111)試験片を 造形しJIS に準じた各試験を温度23 °C で行った. 引張り強度(図 17)は、造形方向Aが最も高く、B, C の順に低くなる.厚さの増加に対してすべての造形 方向でわずかな増加が認められる.曲げ強度(図 18) は、造形方向C, A, Bの順に低くなり、厚さの増加に 伴いCとAが著しい低下を示すがBはほぼ一定であっ た.曲げ弾性率(図 19)は、造形方向C, B, Aの順に低 くなり、厚さの増加に伴いCは著しい低下を示すが、 Bは微増、Aはほぼ一定である.シャルピー衝撃強度 (図 20)は、造形方向B, A, Cの順に低くなる傾向にあ り、厚さの増加に伴い、A は増加、B とCは減少傾向

図18 曲げ強度の造形方向,厚さの依存性

図20 シャルピー衝撃強度の造形方向,厚さの依存性

図23 曲げ弾性率の造形方向,厚さの依存性 (FDM, SLS)

を示している. 例えば,造形方向 C の試料は,引張り 試験を実施する際の引張り方向が積層方向と一致する ため,引張り強さが低くなることが想像できるが,そ の他の機械的性質における各試料の示す実験値は,造 形方向および造形厚さの影響を定性的に示すものでは なく,これらについては一定の傾向は見られないと判 断した.

FDM 方式 (FDM TITAN: 2003 年設置)の結果²⁾との比較を図 21 ~図 24 にまとめて示す. SLS 方式の場合,機械的性質の如何にかかわらず実験値は,FDM方式に比べ造形方向による実験値の大きさに差がなく,造形方向による影響が少なくなっている.つまり,FDM 方式による造形物の有する不均質性や方向性(異方性)に較べると,SLS 方式による造形物は均質で方向性が少ないことがわかる.

5. まとめ

最初に,現状での RP 方式について,それぞれの特徴,性能に言及し,「デジタルものづくり」との関連性を紹介した.さらに,当研究所に 2013 年導入のプラスチック粉末 RP 装置について,実験データをもと

図 24 シャルピー衝撃強度の造形方向,厚さの依存性 (FDM, SLS)

に RP 装置の実力を示した.

RP は、2013 年に 3D プリンタとして知名度が飛躍 的に高まった技術ではあるが、2000 年以降の装置の 技術的な変化は乏しいと考える. 関心の高まりは、む しろ RP 技術を取り巻く環境の次のような変化による ところが大きい. ① 3 次元 CAD 利用の一般化、② RP を利用する企業・機関の大幅増、③一部パテントの失 効や装置メーカの統合による低価格 RP 装置の販売な どである. これらにより、RP 利用のハードル低下と ニーズの増大、さらには用途に特化した RP 装置の開 発などがもたらされ、現状の「3D プリンター・フィー バー」とも形容される情勢となっている.

付加製造プロセス (AM) として,今後,技術革新が もたらされる可能性の高い分野であることを期待しな がらも,現状の装置あるいは技術の到達点として認識 されたい.

参考文献

- 1) 新野俊樹:成形加工, 26 (2014) 142.
- 2) 吉川忠作,菊池武士,奥村俊彦:大阪府立産業技術総 合研究所報告,No.19 (2005) 69.

本技術報告は,地方独立行政法人大阪府立産業技術総合研究所の許可なく転載・複写することはできません.